DERIVATIVES BY RATIO PRINCIPLE FOR q-SETS ON THE TIME SCALE CALCULUS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basic Calculus on Time Scale with Mathematica

Mathematical modeling of time dependent systems are always interesting for applied mathematicians. First continuous and then discrete mathematical modeling are built during the mathematical development from ancient to the modern times. By the discovery of the time scales, the problem of irregular controlling of time dependent systems is solved in 1990’s. In this paper, we explain the derivative...

متن کامل

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

Certain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators

The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...

متن کامل

On the smallest minimal blocking sets of Q(2n, q), for q an odd prime

We characterize the smallest minimal blocking sets of Q(2n, q), q an odd prime, in terms of ovoids of Q(4, q) and Q(6, q). The proofs of these results are written for q = 3, 5, 7 since for these values it was known that every ovoid of Q(4, q) is an elliptic quadric. Recently, in [2], it has been proven that for all q prime, every ovoid of Q(4, q) is an elliptic quadric. Since as many proofs as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractals

سال: 2021

ISSN: 0218-348X,1793-6543

DOI: 10.1142/s0218348x21400405